Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Naser Eltaher Eltayeb, a‡ Siang Guan Teoh, a Jeannie Bee-Jan Teh, b Hoong-Kun Funb* and Kamarulazizi Ibrahim^c

^aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

‡ On study leave from the International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

Correspondence e-mail: hkfun@usm.my

Key indicators

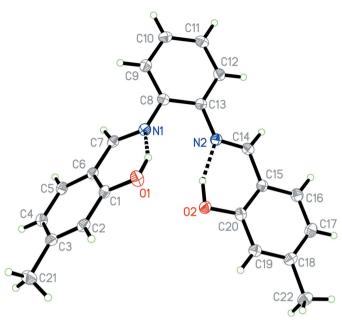
Single-crystal X-ray study T = 100 K Mean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.049 wR factor = 0.117 Data-to-parameter ratio = 21.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,2'-[1,2-Phenylenebis(nitrilomethylidyne)]-bis(5-methylphenol)

The crystal structure of the title compound, $C_{22}H_{20}N_2O_2$, is stabilized by $C-H\cdots O$, $C-H\cdots \pi$ and $\pi-\pi$ interactions. The central benzene ring forms dihedral angles of 58.55 (6) and 4.02 (6)° with the terminal benzene rings.

Received 8 January 2007 Accepted 9 January 2007


Comment

Some Schiff base compounds exhibit various pharmacological activities, e.g. anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006). In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b). Recently we have reported the crystal structures of 1-{2-[2-hydroxy-1-naphthyl)methyleneamino]-phenyliminiomethyl}-2-naphtholate methanol hemisolvate (Eltayeb et al., 2007a) and 6,6'-dimethyl-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol (Eltayeb et al., 2007b). In this paper, we report the crystal structure of the title compound, (I), obtained by the reaction of o-phenylenediamine and 4-methylsalicylaldehyde.

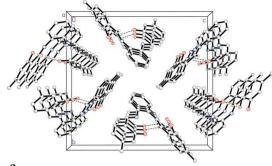
Bond lengths and angles in (I) have normal values (Allen *et al.*, 1987). The dihedral angles between the planes defined by A (C1–C6), B (C8–C13) and C (C15–C20) are 58.55 (6) (A/B), 61.04 (6) (A/C) and 4.02 (6)° (B/C). Intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Table 1 and Fig.1) (Bernstein *et al.*, 1995).

The crystal structure is stabilized by intermolecular C— $H\cdots O$ hydrogen bonds and C— $H\cdots \pi$ interactions involving the C1–C6 benzene ring (centroid Cg1). In addition, the crystal packing is stabilized by π - π interactions between the C8–C13 (centroid Cg2) and C15–C20 (centroid Cg3) benzene rings with a $Cg2\cdots Cg3^i$ distance of 3.6914 (8) Å [symmetry code (i) is given in Table 1]. The molecules are stacked into columns along the a axis (Fig. 2).

© 2007 International Union of Crystallography All rights reserved

Figure 1 The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.

Experimental


To a solution of o-phenylenediamine (0.172 g, 1.6 mmol) in ethanol (20 ml) was added 4-methylsalicylaldehyde (0.444 g, 3.2 mmol). The mixture was refluxed with stirring for 30 min. The resultant orange solution was filtered and orange crystals suitable for X-ray diffraction analysis formed after one week on slow evaporation of the solvent at room temperature (yield 0.35 g, 63.63%; m.p. 410–412 K).

Crystal data

$C_{22}H_{20}N_2O_2$	Z = 4
$M_r = 344.40$	$D_x = 1.299 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 6.0782 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 16.5573 (6) Å	T = 100.0 (1) K
c = 17.4989 (6) Å	Needle, orange
$\beta = 90.348 \ (2)^{\circ}$	$0.46 \times 0.11 \times 0.09 \text{ mm}$

$V = 1761.03 (11) \text{ Å}^3$	0.40 × 0.11 × 0.07 mm
Data collection	
Bruker SMART APEX2 CCD diffractometer ω scans Absorption correction: multi-scan $(SADABS; Bruker, 2005)$ $T_{min} = 0.855, T_{max} = 0.992$	22113 measured reflections 5201 independent reflections 3751 reflections with $I > 2\sigma(I_{\rm int} = 0.034)$ $\theta_{\rm max} = 30.2^{\circ}$
Refinement	

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0447P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.049$	+ 0.5205P]
$wR(F^2) = 0.117$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
5201 reflections	$\Delta \rho_{\text{max}} = 0.29 \text{ e Å}^{-3}$
245 parameters	$\Delta \rho_{\min} = -0.23 \text{ e Å}^{-3}$
H atoms treated by a mixture of	
independent and constrained	

Figure 2 The crystal packing of (I), viewed down the *a* axis. H atoms not involved in intermolecular hydrogen bonding (dashed lines) have been omitted.

Table 1Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O1-H1A···N1	0.96(2)	1.73 (2)	2.599 (1)	149 (2)
$O2-H2B\cdots N2$	0.95(2)	1.67 (2)	2.558 (1)	155 (2)
$C7-H7A\cdots O2^{i}$	0.93	2.40	3.250(2)	152
$C12-H12A\cdots Cg1^{ii}$	0.93	2.78	3.643 (2)	156
$C22-H22B\cdots Cg1^{iii}$	0.96	2.92	3.446 (1)	116

Symmetry codes: (i) x + 1, y, z; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (iii) -x, -y, -z + 1.

O-bound H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and treated as riding, with C-H = 0.93 or 0.96 Å and $U_{\rm iso}({\rm H})$ = $1.2 U_{\rm eq}({\rm C})$ or $1.5 U_{\rm eq}({\rm methyl~C})$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government, Academy of Sciences Malaysia and Universiti Sains Malaysia for a research grant and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.

Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.

Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Techn. 6, 51-59.

Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.

Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, 0117-0119.

Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, 0766–0767.

Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.

Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.

refinement